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SUMMARY 

A linear wave equation correct to fmt order in bed slope. is used to calculate the wave field in the sea 
around an idealized island. This is of circular cylindrical shape and is situated on a paraboloidal shod in 
an Ocean of constant depth (Figure 1). The sides of the island are assumed fully reflecting. The incident 
waves are plane and periodic. Wave periods up to 30 min are investigated, and the Coriolis force is 
neglected. The solution of the wave equation is represented by a finite Fourier series, and a large 
number of very accurate numerical computations are carried through. The results appear partly in 
figures showing amplitude and phase angle curves (in some cases extending to.the water area of 
constant depth outside the shoal), partly in figures showing amplitude us wave period in fixed points. 
Comparison with solutions to the linearized long-wave equation is made, and the validity range of the 
corresponding shallow water theory is given. The influence of the shoal is studied by investigating the 
wave field around an island in an ocean of constant depth. New criteria are given for the applicability of 
a geometrical optics approach (i.e. refraction). Complete numerical refraction solutions for points at the 
shoreline (corresponding to many wave orthogonals ending at the point) for shallow water waves, as for 
the general case, demonstrate the inadequacy of this approach for long-period waves (seismic 
seawaves: tsunamis). All non-hear effects, including dissipation, are excluded. 

KEY WORDS Diffraction Refraction Gravity Water Waves Wave Equation Homma’s Island Tsunamis 

1. INTRODUCTION 

A seismic sea wave, a so-called tsunami (Japanese for ‘harbour wave’), consists of a series of 
waves that approaches the coast with periods usually ranging from 5 to 90 min (Reference 1, 
p. 2). The lengths of these waves are of the order of hundreds of kilometres in the deep 
ocean, while here their amplitudes are usually of the order of a metre. They are therefore 
difficult to detect from the air or from ships. Near land, however, the tsunamis will build up 
in height due to the decrease in water depth. At the same time the amplitude can be further 
amplified because of lateral convergence and reflections. The wavelength will be reduced in 
shallower water. 

The final run-up of tsunamis is a highly non-linear phenomenon. In this study, however, 
we shall investigate the modification of the tsunami wave over that area near the coast, 
where linear theory can be used, i.e. excluding the final run-up. 

A tsunami can also be generated by non-seismic causes, such as landslides and nuclear 
explosions. Therefore Murty (Reference 1, p. 1) cites the more general definition by van 
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238 0. SKOVGAARD AND I. G. JONSSON 

Dorn: 'Tsunami is the Japanese name for the gravity wave system formed in the sea following 
any large-scale, short duration disturbance of the free surface'. Most of the current knowledge 
about tsunamis and tsunami engineering is excellently reviewed by Murty,' and by 
Camfield .'. 

We will calculate the transformation of a small, regular, and plane incident wave caused by 
an idealized island of circular cylindrical form, situated on a paraboloidal shoal in an infinite 
ocean of constant depth. see Figure 1. (To investigate the influence of the shoal, we have also 
looked briefly at an island without a shoal, see Section 5.) 

The water depths, h, are 

(1) 
h = a r 2  for r , z s r s r b  and 0 " ~ 6 < 3 6 0 "  

h = h b ( = a r i )  for r b S r < m  and 0"56<360" 

The shoreline radius is r, = 10 km, the outer radius of the shoal is r, = 30 km, and the 
depth hb = 4,000 m. Thus shoreline depth is ha = hb(r,/rb)* = 4,000/9=444 m. (Generally 
subscript a denotes a value at the shoreline, and subscript b denotes a value at the outer 
boundary of the shoal.) The factor of proportionality, a, in (1) becomes a = 4/9 x lo-' m-'. 

This type of island is seemingly accepted as being representative of a 'Pacific i ~ l a n d ' . ~ . ~  
Tsunami amplification over other depth profiles has been discussed by Meyer,' Smith and 
Sprinks; and Kriegsmann? and experiments have been performed by Williams and Kartha' 
and Provis? 

The present paper is a sequel to papers by Jonsson el  a1.l' (hereafter referred to as paper 
I ) ,  where we restricted the presentation to the wave field at the shoreline, including some 
shallow water refraction calculations, and by Jonsson and Skovgaard'l (hereafter referred to 
as paper II) ,  where we looked at the wave field over the shoal for wave periods up to 240 s, 
including a few intermediate depth refraction calculations for the shoreline. 

Figure 1. Skttch of the idealized island on a paraboloidal shoal: (a) vertical: 
(h) horizontal 
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The purpose of the paper is therefore threefold. Firstly to investigate the wave field 
(amplitudes and phase angles) outside the shoal, i.e. to study the ‘disturbance’ out in the 
deep ocean due to the presence of the island. Among other things it will be seen here that 
amphidromic points (i.e. points where the amplitude is always vanishing) can also be found 
on constant water depth, even in the absence of a Coriolis force. Secondly, we will look at 
the wave field over the shoal itself for one representative wave period T larger than 240 s, 
viz T = 480 s. (In selected points at the shoreline the amplitude will be given as a continuous 
function of T.) For both cases above the (diffraction) wave field comes out as a solution to a 
linear so-called mild-slope wave equation, presented in Section 2. Thirdly, we shall look into 
the results of a ‘vector addition refraction theory’ for intermediate depth. Here the physical 
limitations of a refraction approach (i.e. geometrical optics) for long waves will be illustrated. 

A discussion is given in paper I of other approaches to calculate ‘waves around islands’. 
Two points are selected for a more detailed investigation. One is the middle of the front 

face of the island; it is called point P. The other is the middle of the ‘shadow’ part of the 
island, point Q. Both points are shown in Figure 1. 

In Appendix I we have made an investigation of the convergence rates of the series used in 
the diffraction solution. The computer and the programming language are referred to in 
Appendix 11. In Appendix I11 the abbreviations used throughout the paper are summarized. 

A number of figures from papers I and I1 are referenced in the text. Some of the key 
figures from these papers are therefore reprinted in Appendix IV. 

2. ASSUIvflTIONS AND DEFINITIONS 

The incident surface gravity waves are assumed to be plane, time-harmonic, and of small 
amplitude. The Coriolis force is neglected, which is justified for the considered higher end of 
the tsunami frequency range. The sides of the island are assumed fully reflecting. All 
non-linear effects (including dissipation) are neglected. 

The diffraction of a simple time-harmonic surface gravity wave over a gently sloping sea 
bed is governed by the following reduced mild-slope wave equation.”-16 

where V is the horizontal gradient operator (alax, slay) or (alar, r-’ aide), c is the phase 
speed, c, is the group speed, k = 2 d L  is the wave number ( L  = cT is wavelength), and 
q = q(r, 0 )  is the (complex) surface wave amplitude. r and 0 are defined in Figure 1. 

Note that the instantaneous complex surface elevation is q exp ( -  iot), where i is the 
imaginary unit, o = 2 d T  is the (constant) angular frequency, and t is time. The instantane- 
ous real surface elevation 5 is thus 

5 = Re {q exp ( - id)}  

q = A exp (icp) 

(3) 

(4) 

[ = A  cos(cp-ot) ( 5 )  

We define the real surface amplitude A = A(r, B ) ,  and phase angle cp = q ( r ,  0 )  (also real) by 

i.e. we have from (3). 

Phase angle is still determined less an arbitrary constant. This is remedied by demanding that 
cp be zero in the far field at B = *90” for t = 0. In other words, cp is the phase angle at that 
instant, when the undisturbed wave crest passes through the centre of the island. 
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The real amplitude of the incoming wave is called Ai. In the amplitude graphs we have 

The phase speed c is determined by the classic implicit dispersion relation for small 
depicted the relative amplitudes AIA,. 

amplitude water waves 

c = d(f tanh kh) 

in which g is the gravity acceleration, and h = h(r, O), the water depth. The group speed cp is 
determined by 

For very long waves (in practice h/L<0-05) ,  (2) reduces to the linearized long-wave 

V .  ( h V q ) + h k 2 q = 0  (8) 

(9) 
For calculations involving (6) and (7), we use the acronym IDT, which stands for 

Intermediate Depth Theory. For calculations involving (9) we use the acronym SWT, which 
stands for shallow Water Theory. 

For constant water depth, or in deep water (in practice h/L>O.5), (2) reduces to the 
Helmholtz equation 

(10) 
Equation (2) is correct to first order in both wave amplitude and bed s1ope.l6 
The applicability of a time-stepping approximate finite difference method, which is more 

The deep water wavelength Lo emerges from (6) with tanh kh = 1, 

equation 

In this case there is no dispersion and the phase and group speeds are given by 

c = c, = d( gh) 

V2q + k2q = 0 

related to practice, is tested in a concurrent publication." 

3. THE GLOBAL WAVE FIELD 

One of the new features of this paper is the calculation and presentation of the wave field 
also outside the shoal, i.e. in the area of constant water depth far away from the island. This 
is important for several reasons. One is that in connection with the possible application of a 
general mathematical/numerical model on tsunami response" we must know the rate of 
decay of the oscillations of the water surface around the island. In this paper this extended 
investigation will be presented in graphs and tables. 

Another important application of such very accurate solutions is that they can serve as a 
check for more general numerical schemes. In order to facilitate such a check two numerical 
test solutions are tabulated in Table I. In the table relative amplitude A/A, and phase angle 
rp are given for two periods (T = 120 s and 480 s), for seven values of azimuth 8 (= 0", 30°, 
60°, go", 120", 150" and 180"), and for three values of relative distance, r/r,( = 1, 3 and 9). 
The values in Table I(a) are calculated using shallow water theory, and the values in Table 
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I(b) using intermediate depth theory. The table is an extension of paper I, Table 2,  which 
stopped at the base of the shoal (r /ro = 3). Also another SWT period is chosen here, 
T = 480 s instead of T = 410.47 . . . s. 

3.1. The shallow water theory (SWT) 

In order to calculate the wave field over the area in question, we solve the partial 
differential equation (8), the shallow water wave equation. The boundary conditions are full 
reflection at the island ( r  = ra), and Sommerfeld's radiation condition at infinity (for the 
scattered part of the wave field). See paper I for details. 

Because of the rotational symmetry of the bathymetry, we can apply the method of 
separation of variables. 

Over the shod (ra I r I rb )  the solution for the complex amplitude is 

q =  c R,(r)cos(ne) 056<360° 
n =O 

where the functions &(r)  ( n  = 0,1,2,. . .) are solutions to linear two-point boundary value 
problems. These ordinary differential equations were solved by H ~ m m a , ~  see paper I, pp. 
473-476 for details. Angle 6 is defined in Figure 1. 

Outside the shoal ( r z r b )  the wave field is the sum of an incident and a scattered wave 
field, i.e. 

q = q i + q x  (13) 

with 

In these equations Ai is the amplitude (real) of the incoming wave, E, is the Neumann factor 
(i.e. E, = 1 for n = 0, and E, = 2 for n # 0) i is the imaginary unit, Jn are Bessel functions of 
nth order and first kind, k b  = 2T/Lb, the wave number for r 2 rb, C, are integration constants, 
and H',) are Hankel functions of the nth order and first kind. 

At r=rb  there is continuity in q and in its first derivative with respect to r. Using the 
former condition we find from (12) and (13) for the determination of C, 

where we have dropped the superscript (1) on H, and further T = kbrb. Functions (R,,)r=rb are 
determined by Homrna's3 solution (SWT, see (3.19) in paper I). Inserting the results in (16) 
yields 

where p=rb/ra,  a,, =J(1 +n2--'), and we have dropped the argument T of the Bessel 
function and of the Hankel function and its derivative (i.e. here HL = ( d H ~ , " ( k b r ) / d ( k b r ) ) ~ = ~ ~ ) .  
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The complete solution outside the shoal hereafter emerges from (13)-(15) with (17) 
inserted in the latter equation. 

Some results are depicted in Figures 2 and 3. By comparing the two it is seen that 
amplitudes in the 'shadow' of the island are much smaller for the small period than for the 
large one, as expected. Conversely, reflection along the centreline in front of the island is 
highest for the small period, and the decay rate quite small. Maxima and minima are 
indicated along the boundaries of the depicted area. It appears that even some wavelengths 
away from the island the incident wave is quite perturbed. This is also iIIustrated by Figure 4, 
in which positions of maxima and minima are indicated. 

It is seen in Figure 2 that amphidromic points can also exist in the constant depth region. 
This was also found by Provis: who considered a conical island in an ocean of constant 
depth. 

A more detailed picture of the phase structure over the shoal for T = 240 s is found in 
Figure 7, where A 9  is only 30". Details of the wave field over the shoal and in its immediate 
vicinity for T = 480 s are presented in Figure 5, which is an enlarged version of the centrai 
part of Figure 3. 

Figure 2. Contours for relative amplitude A/A, and phase angle 9 over the shoal and on constant water 
depth outside. T = 240 s. The interval between A/A,-curves is 0.5 (curves over A/A, = 1.5  not shown), and 

between 9-curves is 120". Underlined numbers are A/A, 
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Incident p_, wows L&=31689 

c L& = 9  5067 - 
% = O O U  h=00014 
Lb Lo Lepnd --- Contours for phase lop 9. - Contours fcir0Iative 

amplitude PIIA, 

ire 3. Contours for relative amplitude A/A,  and phase angle q over the shoal and on constant water d 
,ide. T=480s. The interval between AIA,-curves is 0.5, and between q-curves is 60". Underlined num 

are AIA, 

- 

0 -  

, , , I  

180 1% 120 SJ €0 3l 0 
Incident roves Az8muIh 9' 
4c--r 

Figure 4 Relative amplitude A/A,  us azimuth t (O along half cucles. 7 = 480 s 
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Incident waves 

E 0.012 = 0.014 
b a Legend: 

---Cantam far phse lag 
- Contars for relative 

amplltude A/AI 

Figure 5 .  Contours for relative amplitude A/A, and phase angle Q over the shoal and on constant water 
depth outside. T = 480 s. The interval between A/A,-cumes is 0.5, and between q-curves is 30". Underlined 

numbers are A/A, 

3.2. The intermediate depth theory (IDT) 

The wave field is here a solution to the general wave equation (2). Over the shoal it is here 
calculated for two periods, T = 120 s and 240 s, see Figures 6 and 7. 

In Figure 6 we have shown the wave field for T = 120 s. Only the constant phase lines are 
depicted; the corresponding amplitutde curves are given in paper 11, Figure 3, and in 
Appendix IV. The solution is given by an expansion analogous to (12), see paper I, pp. 
473-475 and 481-483, and paper 11, pp. 44-46, for details. There are many amphidromic 
points over the shoal for this short period, 46 ( = 2 x 23) in all. 

It appears from paper I, Figure 6, and paper 11, Figure 4 (also Appendix IV), and paper 11, 
Figure 5 (also Appendix N), as from Figure 9 in the present paper (the point Q in Figure l), 
that it is meaningless to use SWT for a period of 120s. There is therefore no comparison 
attempted with a shallow water solution in Figure 6. 

This is done for the double period, however, T = 240 s in Figure 7. (The SWT part is a 
'blow-up' of Figure 2). Also here only the constant phase lines are given; the corresponding 
comparison of amplitudes is shown in paper 11, Figure 6, and in Appendix IV. As could be 
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Incident wnves PDiNT P POiNT 0 - 
Lafro = 19358 

t b 

L, no = 0 7758 
c 

ha /La= 0.057 
hb/Lb= 0 207 

Figure 6. Contours for phase angle q over the shoal. T = 120 s. The interval between the q-curves is 60" 

Incident woves POINT P POtdT D 
--b-- 

IDT Lb/ra = 4 5311 
SWT Lblro= 4753L 

ID1 La/% = 15762 

SWT Lobo = 158L5 

b. 

c 

c 

c - Legd Amphlo-omic pint 
Diftmchon solution 
Dlffractton solution 

IDT &=1510L b.= 0028 L!h= 0088 __ _ _ _  rb Lo Lb I DT 
SWT 

Figure 7 .  Contours for phase angle p over the shoal corresponding to both IDT and S W .  T=240s. The 
interval between the q-curves is 30" 
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anticipated from Figure 9, the difference between the two solutions is not large. This can also 
be seen from the closeness of the two sets of amphidromic points. The number of these over 
the shoal has fallen from the 46 for T = 120 s to now only 10 ( = 2 X 5). (The number of 
amphidromic points is naturally closeiy connected with the 'frequency' of the oscillation of a 
curve like that in Figure 9: By analogy with the response curve for an 'organ pipe', it appears 
that the number of amphidromic points must increase with increasing frequency.) 

4. THE LOCAL WAVE FIELD 

In this section we shall concentrate on conditions at the shoreline ( r  = r, = 10,000 m), with 
special emphasis on the points P and Q (see Figure 1). The point P is situated at the middle 
of the 'illuminated' part of the island, while the point Q is at the middle of the 'shadow' part. 
In particular the short wave limit at these two points will be illustrated and discussed. 

4.1. The diffraction solution 

The IDT-solution at the island (i.e. the solution to (2) for r = r,) is given in Figure 8 for 
T = 120 s .  This relatively short period results in many amplitude peaks at the shoreline. The 
number of peaks decreases with increasing period T, see Figure 2 in paper I and Appendix 
IV, and Figure 7 in paper 11. Note that for this period the amplitude in the shadow point Q 
exceeds that in the illuminated point P. The refraction solutions in the figure are dealt with in 
Section 4.2. 

The relative amplitude at the point P as a function of period was depicted in detail as 
Figure 6 in paper I, and as Figure 4 in paper I1 (also Appendix I%'). A similar figure for the 
point Q is presented here as Figure 9, which is a 'blow-up' of the first 500 s of the 1,800 s 
range in Figure 5 in paper I1 (also in Appendix IV). A comparison with the just mentioned 
figures for the point P shows that the mean amplitudes (averaged over one oscillation) are 
about the same for the points Q and P in the period range 100-400 S. However, oscillations 

Legend. 

Refroction Solut~On, primary ofthagonol 
Complete retractson solution 

w 

o ~ ' " " ' ' " " ~ ' ' " '  180 150 120 90 w 30 0 
AZIMUTH €3; t 

POINT 0 t 
POINT P Incident waves 

--pb-L 

Figure 8. Relative amplitude A/A, at shoreline us azimuth 0: 
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Figure 9. Relative amplitude A/A, at the point Q [(r/rar 8:) = (1, O)] us wave period T and relative 
wavelength LJra 

are much smaller at the point Q, oscillation heights being only about half the size of those at 
the point P. 

The accuracy of the shallow water approximation can also be read from Figure 9. The 
usually accepted shallow water limit h/L = 1/20 yields for h = hb = 4,000 m a limiting period 
of about 410 s. The SWT-solution (i.e. the solution to (8)) is seen to be very accurate here. It 
can be concluded, therefore, as in paper 11, that the shallow water wave equation (8) gives a 
good prediction of amplitudes near the shoreline for tsunami periods larger than about 
7 min, as long as linear theory holds. If a high accuracy is not needed, one can even choose a 
lower limit, say 5 min. 

For smaller periods the SWT approximation becomes rapidly more inaccurate. It appears 
from Figure 9 that although the discrepancy is not totally one-sided, the general trend is the 
S W T  solution exaggerating the amplitudes. This is very noticeable for the peak values at the 
‘resonance’ periods. 

The situation in the short wave limit for the point Q is illustrated in Figure 10. 
As expected, wind waves and swell (Tc20  s) do not effectively reach the point Q. As the 

deep water limit at the shoreline hJLa = 0.50 is passed, however, the amplitude grows 
rapidly. This is because the waves are ‘bent’ around the island as soon as they ‘feel bottom’, 
since the phase speed is smallest at the island, where the water depth is smallest. Thus the 
increase in amplitude is expected to be smaller had the water depth been constant. This 
appears from the figure, which further demonstrates that the two cases give almost identical 
results for ‘deep water periods’. 

A similar presentation is given in Figure 11 for the point P. As expected, the situation for 
deep water periods corresponds very nearly to just full reflection (A/Ai=2). Two effects 
influence the amplitude as we pass the deep water limit towards larger periods. The 
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Figure 10. Relative amplitude A/A, at the point Q for small periods T 

‘convergence’ of the waves tends to increase the height; the ‘shoaling’ tends to decrease the 
height in the beginning, since group speed (7) has a maximum for 2.rrh/Lo= I. (The former 
effect is the strongest for the point Q.) Therefore a drop in the amplitude curves is 
experienced as we pass the deep water limit. Hereafter the two effects go in the same 
direction, the amplitude grows fast and starts to oscillate visibly for T= 35 s. The solution for 
constant depth h =  ha naturally does not exhibit such behaviour, since the two effects 
mentioned are not present here. (The terms ‘convergence’ and ‘shoaling’ both in fact belong 
to geometrical optics, see (23). The concepts are useful, however, for a qualitative descrip- 
tion, and as can be seen from the figure, also quantitatively for small periods (TS 35 s) ,  
where the diffraction and refraction solutions almost coincide.) 

4.2. 2”he refraction solution 

In paper I it was shown that in the shallow water case (SWT) the orthogonals are always 
logarithmic spirals over the shoal, so that all incoming waves meeting the shoal are ‘trapped‘. 
This means that the incoming orthogonals in the range - r, < y < r, (see Figure 1) will all 
eventually end at the shoreline, the outermost having first whirled many times around the 
island. It was further shown that the complete SWT shoreline amplitude everywhere is the 
(complex) siun of an infinite number of individual complex amplitudes, each one correspond- 
ing to its logarithmic spiral. The results were shown to be in poor agreement with the 
diffraction solution (paper I, Figure 7, also in Appendix IV), and the sum diverged for 
2mJL, being an integer. IDT-formulae were presented, but no numerical results were 
given, except for the primary orthogonal reaching the point P. 
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Figure 11. Relative amplitude A/Ai at the point P for small periods T 

In paper I1 it was shown that the IDT refraction solution results in a finite number of 
contributions to the amplitude everywhere, the number increasing with period, and the 
spirals are no longer logarithmic. For the point P the first four limiting periods were 
presented, i.e. the periods where the number of orthogonals is suddenly increased by two. 
Some of the corresponding limiting orthogonals were shown in Figure 9, and a few numerical 
values given in Figure 4 (paper 11); the latter figure is also presented in Appendix IV. The 
corresponding vector addition diagrams were not shown, however. Problems concerning 
points in the ‘geometrical shadow’ were deferred for later treatment, and so this will also be 
dealt with here. 
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In this section we shall deal briefly with the fundamentals of the refraction approximation 
(when are geometrical optics methods reliable?). We shall furthermore go deeper into vector 
addition problems. 

Let us first illustrate the effect of the period by considering Figures 12, 13 and 14. 
For the very short waves (Figure 12), only the orthogonals passing close to the island will 

experience an appreciable change of direction; the shoal acts as a weak ‘condenser lens’, and 
there is no real ‘trapping’. As a result the shadow part of the island is virtually unaffected by 
the waves. (Figure 10 shows that the relative amplitude at the point Q is really about 0-12 
for T = 30 s.) 

The ‘medium’ period chosen in Figure 13 corresponds to hJL, = 1/20, i.e. shallow water 
waves at the island (but not further out). The figure shows an appreciable number of 
orthogonals being trapped by the shoal. However, in contrast to the shallow water case, the 
spirals are not logarithmic, and not all are trapped. For some y-value of the incoming wave 
in the region 26,100 m < y < 27,000 m, the orthogonals start leaving the shoal without having 
touched the island. In Figure 14 the period is further increased, corresponding to h b / h  = 
1/20, i.e. ‘shallow water’ everywhere. The orthogonal paths are therefore close to being 
logarithmic spirals (dashed curves) as shown. Three orthogonals hitting the point P are 
shown (corresponding, in reality, to a total of five because of symmetry). As can be seen 
from Figure 4 in paper 11, the total number of orthogonals for the point P is seven for the 
period considered. 

“;T, Lblr,:o.1405 

L,/r,=O.IKg 

Figure 12. Orthogonal paths for T = 30 s 
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Figure 13. Orthogonal paths for T =  136.82s (h,/L, = 1/20). (The thin c w e  begin- 
ning to the right part of the figure corresponds 10 an incoming y-value of 26,100 m) 

1 = 410 47 I 

t y  

Figure 14. Orthogonal paths for T =  410.47 s (hJL ,  = 1/20) 
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A criterion for the applicability of a refraction approach can be found in the following 
way.“ We seek a ‘propagation solution’ of the form 

= ~ ~ - i k R  

to the wave equation ( 2 )  and investigate under which circumstances (18) can in fact be a 
solution. In (18) (‘Debye’s Ansatz’, see Reference 19, pp. 10-11) q = q ( x ,  y)  is the complex 
amplitude, and A = A(x, y )  is the physical amplitude (half wave height); k = k(x, y)  is the 
wave number, and R = R(x, y) the phase function, both real (kR is the phase angle). 
Inserting (18) in (2) and putting the real part equal to zero, yields the following results for a 
refraction solution to be valid: 

and 

V2A -<< 1 
k2A 

Condition (20) is well-known; (19) is probably new. The substance of (19) can be evaluated 
by looking at shallow water waves (for the complete result, see Reference 18). With ccg= gh, 
(19) gives 

while (20) generally can be written 

In (22) K* is the local mean curvature of the amplitude surface. So it appears that a 
refraction approach puts restrictions on the slope as well as on the curvature of the amplitude 
surface (IVAI is the maximum local slope of the A-surface). It is interesting to note, 
however, that the slope of the amplitude surface appears together with the slope of the sea 
bed ]Vh(, so that their product must be small, see (21). This is an extension of the criterion 
suggested in papers I and 11, that lVhl be small compared with kh. If, for instance, lVAI/(kA) 
is very small, the requirements to the bed slope are less strict. The opposite is met if 
I V A ~ / ( ~ A )  is large. 

It is seen from (21) and (22) that refraction theory cannot hold for long waves (k small), 
large bed slopes ((Vhl large), or along shadow boundaries (IVAI and K~ large). The last result 
is well-known. The first, however, is less obvious. The conclusion is that refraction theory 
will give increasingly poor results as the period increases. In paper I1 it was concluded (p. 54) 
that generally refraction theory is too primitive for waves in the tsunami range. In the 
present paper we shall elaborate on this by presenting limiting wave periods (where the 
number of orthogonals jumps by two) for the point Q, and by looking in some detail upon 
the vector addition for IDT for the points Q and P. 

It should be observed that for the present we cannot say how small the quantities on the 
left-hand sides of (19) and (20) should be. Only a study of some ‘canonical’ cases can reveal 
this. It is further’noted that, using (19) and (20), the imaginary part of (2),  with (18) inserted, 
put equal to zero naturally gives the energy equation, energy flux being constant between 
neighbouring orthogonals (dissipation is neglected). l8 
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Figure 15. Relative amplitude A/A, at the point Q us wave period T and relative wavelength 
LJra using shallow water theory. VART is the complete refraction solution (Vector Addition 

Refraction Theory) 

A more complete exposition of the foundation of geometrical optics has been given by 
Arley” who further found that the wave front curvature must be small compared with L-’ for 
a refraction approach to be valid. 

We shall first look at the shallow water solution for the point Q. The complete (VART) 
SWT refraction solution for the middle island shadow point Q is shown for the first time in 
Figure 15. (The similar curve for the point P is shown in Figure 7 in paper I, and in 
Appendix IV). VART stands for Vector Addition Refraction Theory. Following the same 
line of argument as in paper I p.488) it appears that here also the solution diverges for 
2ma/La = p being an integer. The first four ‘peak periods’ are then T = 951.72 s ( p  = l), 
T = 475.86 s ( p  = Z), T = 317.24 s (p = 3), and T = 237.93 s (p = 4). The complete SWT 
refraction solution is seen generally to have no similarity to the diffraction solution. There is 
some resemblance between the ‘resonance’ periods, though. It appears that the peaks in 
A/Ai (Figure 15) at these ‘resonance’ periods are located to the right of corresponding peaks 
in the shallow water diffraction solution. This is commented upon in paper 1 (p. 489). The 
difference in peak period is smallest for p large (small T).  However, the agreement is weaker 
than for the point P, see paper I, Figure 7, and Appendix W .  

Using intermediate depth theory (IDT), the point Q is met by a finite number of 
orthogonals. Figure 16 shows the first three (six) limiting spirals for this point (they are 
tangent to the island at that point). Thus for T<58*42 s, no orthogonals reach the point Q. 
For 58.42 s s  T <  167.04 s it is reached by two (symmetrical) orthogonals, for 167.04 SIT< 
286.97 s by four orthogonals, for 286.97 s i T(409-67 s (not shown in the figure) by six 
orthogonals, and so on. For any finite period the number of orthogonals is finite (using IDT); 
it increases with increasing T and the number tends to infinity as the period goes to infinity. 
It is not surprising, then, that shallow water theory gives an infinite number of orthogonais 
(see paper I). 
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r. = l0.000rn 

Constant waicr depth h = 4,000 m outside shoal 

Figure 16. Limiting orthogonals for the point Q with corresponding limiting periods. Symmetrical 
orthogonals starting below the x-axis not shown in full 

In Figure 9 we can follow the complete IDT refraction solution for the point Q up to 
about hJL, = 1/20. Following the comments to Figure 16 the refraction solution for 
T < 58.42 s gives zero amplitude here. Then the point is suddenly met by two orthogonals, 
and the relatiye amplitude jumps up to about 2 (also hinted at in Figure 10). By further 
increasing the period two interesting results are derived. Firstly, the refraction solution for 
the point Q does not oscillate as long as this point is met by only two orthogonals (see later 
for comments). Secondly, in the region viewed the refraction solution is an approximate 
upper bound for the diffraction solution. 

In conclusion, neither refraction approach (SWT or IDT) can be said to give a reliable 
representation of the ‘true’ solution for the point Q, the diffraction solution. 

Further information about the IDT refraction solution can be found by looking at the 
results for the point P, Figure 4 in paper 11, see Appendix W .  It appears from this figure that 
as the number of orthogonals meeting the point jumps from one to three, the IDT refraction 
solution starts to oscillate. (The absence of oscillations in the short-period refraction solution 
is also illustrated in Figure 11.) Since the important thing at this jump is that the point is now 
met by orthogonals whose amplitudes are not all in phase (see Figure 18), it could be 
speculated that oscillations would also be found in Figure 9 had we continued the IDT 
refraction solution beyond T = 167.04 s. Still, inspecting Figure 4 in paper I1 (also Appendix 
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t’ 

Figure 17. The first five orthogonals reaching the point P. showing two of 
them being reflected (SWT) 

IV) once more leaves no hope for meeting a refraction solution which is a close approxima- 
tion to the diffraction solution here. 

Let us finally compare vector additions for SWT and IDT refraction solutions for the point 
P. Generally, following an orthogonal to the shoreline, the relative amplitude pertaining to 
this orthogonal is 

Here K L  is the modified refraction coefficient (gwes the effect of orthogonal convergence or 
divergence), K :  is the modified shoaling coefficient (gves the effect of changing water depth), 
and K ,  is the reflection coefficient (here assumed equal to one). Examples of reflected 
orthogonals are shown in Figure 17. Phase angles are determined by integrating ds/c along 
the orthogonals, s being distance. Further details are given by Skovgaard er aL2’ and in 
paper I. 

Some results are presented in Figure 18. Starting with (a) we look at a period very close to, 
but slightly below, the one where the point F is reached by three orthogonals. The vector 
corresponds to the primary orthogonal. At (b) we have just reached the period when the 
number of orthogonals becomes three. The contributions from the second and third 
orthogonals (marked ‘2’ and ‘3’) are equal, since these orthogonals are symmetrical. The 
result is a jump in A/Ai, shown in Figure 4 in paper 11, and in Appendix IV. (Increasing T a 
little more affects the phase angle for ‘2’ and ‘3’ stronger than that for ‘1’; this probably 
explains why A/Ai can oscillate as shown in this figure.) 

In (a) and (b) it would be physically absurd to include an SWT solution. This is done in (c) 
and (d), however. In (c) we have just passed a period (237.93s) when the S W  solution 
diverges. Still, the resulting amplitude has decreased considerably, being (by chance) quite 
close to the IDT solution. The latter is the sum of five contributions, see Figure 19. The 
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Figure 19. Orthogonals reaching the point P for T = 240 s (Only the first five SWT orthogonals shown) 
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higher the orthogonal number, the smaller the refraction coefficient and thus the amplitude 
contribution. Finally (d) illustrates conditions in the shallow water limit T = 410.47 s ,  
corresponding to hJL, = 1/20. The difference between the IDI‘ and S W  solutions is quite 
small, in amplitude as well as in phase angle. 

The small deviations between the IDT and the SWT solutions in (c) and (d) in Figure 18 
should not lure one into believing that this is a general trend. This is evident from the fact 
alone that the SWT solution can diverge; the IDT ditto cannot. S e e  also the four IDT 
amplitude points in paper 11, Figure 4 (also in Appendix Tv), and the two VART-SW 
surface displacements at point P around LJra = am, in paper I ,  Figure 11 (also in Appendix 
Iv). 

The orthogonal paths resulting in (c) in Figure 18 are depicted in Figure 19. 
The IDT refraction solution along the island circumference is shown in Figure 8 for 

T = 120 s. The primary orthogonal gives a kind of moving average of the diffraction solution, 
with no oscillations present. The complete refraction solutions for the point P (three 
orthogonals) and the point Q (two orthogonals) are also shown. The latter gives the same 
amplitude as the difiaction solution. This is a coincidence, however, as can be seen from 
Figure 9. 

5. ISLAND WITHOUT A SHOAL 

In this section we shall illustrate the influence of the shoal by looking at a few cases of a 
circular cylindrical island in an ocean of constant depth, i.e. without a shoal. In Figures 20 
and 21 wavelength L is related to island radius r, ; the ‘corresponding’ wave periods depend 
on the choice of water depth and island radius. To be able to make a direct comparison with 
previous figures we choose h = & = 4,000 m here and r, = 10 km. 

Since water depth is now constant, there is neither ‘shoaling’ nor ‘refraction’; what we 
have is simply ‘diffraction in a homogeneous medium’. This means that there is less 
‘trapping’ of wave energy at the island, which is especially noticeable when one looks at 
conditions in the shadow part of the island. In front of the island we have only partial 
reflection; this is due to the curvature of the shoreline. The result is a modified standing 
wave. Also the amphidromic points vanish in the absence of an increasing water depth away 
from the island. 

The diffraction patterns in Figures 20 and 21 are solutions to the Helmholtz equation (lo), 
since phase speed is constant here. 

In Figure 20 we have depicted amplitudes and phase angles for a large water area, 
corresponding to the longest period under investigation, T = 480 s. Comparison with Figure 
3 (same period, with shoal) shows generally a much less disturbed wave field. As an example 
the deep minimum in the upper right-hand part of Figure 3 is missing in Figure 20. 

For this rather long wave (as compared with island size) the relative amplitudes in the 
middle of the shadow region (i.e. along the positive x-axis) come very close to the limiting 
value-unity-for T tending to infinity. In the presence of the shoal (Figure 3), however, the 
waves are ‘bent’ around the island, and much higher amplitudes are found here. The limiting 
value, A/Ai = 1 for T +  m, is common for the two cases, see for instance paper 11, Figure 5, 
and Appendix IV. In  the limit T-0, the amplitude vanishes at the point Q (and further 
along the positive x-axis), see Figure 10 and paper 11, Figure 5 (Appendix IV). 

In the middle of the ‘illuminated’ region (i.e. along the negative x-axis), deviations from 
unity of relative amplitude are smaller in Figure 20 than in Figure 3, as expected; there is 
more reflection in the latter case, naturally. The large difference in amplitude at the point P 
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Figure 20. Contours for relative amplitude A/Ai and phase angle cp for a cylindrical island in an ocean of 
constant depth. For h = 4,000 m, and r, = 10 km, T = 480 s. The interval between the A / A , - w e s  is 0.5, 

and between the cp-curves is 60”. Underlined numbers are AIA, 

is due to ‘shoaling’ and ‘refraction’ effects in the case of a shoal (Figure 3). For T going to 
infinity, the relative amplitude approaches unity here, with or without a shoal, see paper I, 
Figure 7, and Appendix IV. In the limit T + 0, we have full reflection at the point P (and, 
further, neither shoaling nor refraction in the case of a shoal), and so in both cases A/Ai = 2, 
see Figure 11 and paper 11; Figures 4 and 11, Appendix IV in this paper. 

In Figure 21 we have almost deep water waves for h = 4,000 m and r, = 10 km, since this 
gives h/L=0-51. The corresponding period is T = 7 1  s. For this small wavelength (as 
compared with island radius) we have nearly full reflection in front of the island, and quite 
small amplitudes in the lee of it. The deviation between Figures 20 and 21 is marked in this 
respect. (Note when comparing that in Figure 21 we have omitted to show the curves for 
A/Ai = l.5-shown in Figure 20-and A/Ai = 0.5. So in reality there is a ‘hole’ behind the 
island in Figure 21. ‘deeper’ than A/Ai = 0.5.) 

In paper 11, Figure 10 we have shown amplitudes and phase angles for a wavelength 
between those in the present Figures 20 and 21; the period in the above-mentioned figure is 
T = 174 s for h = 4,000 m, and r, = 10 km. 

The variation for continuous periods is shown in paper 11, Figure 11 (and in Appendix Iv) 
for point P. (Note, though, that in the figure periods T corresponds to h = ha = 444 m. The 
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Figure 21. Contours for relative amplitude A/Ai and phase angle cp for a cylindrical island in an ocean of 
constant depth. For h=4,000m, and r , = l O k m ,  T-71s. The interval between the A/A,-curves is 1, and 

between the cp-curves is 60". Underlined numbers are A/A, 

transformation of the T-axis to h = h,, =4,00Om is trivial, however.) An expanded view for 
small periods is shown in the present Figure 11. 

The variation for continuous periods for the point Q is shown in Figure 10. Also here note 
that in the figure periods T correspond to h = ha = 444 m. 

6. CONCLUSION 

A number of complete linear refraction and diflraction solutions have been presented for the 
sea surface in the neighbourhood of the island shown in Figure 1. The incident (tsunami) 
waves are assumed plane, regular, and of smatl amplitude, and the sides of the island fully 
reflecting. Dissipation is neglected, as is the Coriolis force. 

The paper is a sequel to two previous contributions by the authors, Jonsson et a1." (paper 
I), and Jonsson and Skovgaard" (paper 11). Paper I was restricted to the presentation of the 
wave field at the shoreline of the island, while paper I1 concentrated on the wave field over 
the shoal, for periods in the upper end of the tsunami frequency range (wave periods 120 
and 240 s). Refraction calculations (only for the shoreline) were extensively discussed and 
presented for Shallow Water Theory (SWT- 'long waves') in paper I, while in paper I1 some 
steps were taken towards an Intermediate Depth Theory (IDT - 'short waves') refraction 
solution. 
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The present study is therefore primarily directed towards the following three subject areas: 
(i) The wave field in the ocean of constant depth far away from the island and shoal; (ii) the 
wave field over the shoal for a larger wave period (T = 480 s); (iii) refraction calculation 
results for two selected points at the shoreline (P and Q in Figure 1) using an IDT Vector 
Addition Refraction Theory (VART). The result is a large number of very accurate 
numerical results, to a great extent presented in graphical form, and two test solutions are 
tabulated. 

For items (i) and (ii) solutions are found using a so-called mild-slope wave equation (based 
on IDT), which is correct to tirst order in both wave steepness and bed slope. The resulting 
amplitude-phase figures show among other things that the number of amphidromic points 
(where the amplitude vanishes) decreases with increasing period; for T = 480 s they are 
totally absent. It is further found that amphidromic points can exist, not only over the shoal 
but also outside it, in the water area of constant depth. The amplitude out at sea can be quite 
large compared with that of the incoming wave. 

The influence of the shoal is studied by looking at the diflracted wave field around a 
circular cylindrical island in an ocean of constant depth (solutions to the Helmholtz 
equation); generally the wave field is less ‘disturbed’ in the absence of the shoal. This is 
illustrated by the fact that we do not find amphidromic points here (since the Coriolis force is 
neglected). With the shoal present the amplitudes near the island can be several times the 
incident wave. 

The continuous variation with wave period of the amplitudes in the points P and Q (see 
Figure 1) is studied and illustrated in great detail for the smaller period values. The 
diffraction solution is found here to be well represented by the result of a refraction 
approach for small wave periods (T<35 s for the point P, somewhat less for the point Q). 
The rapidly growing oscillations of the amplitude us period for longer periods is illustrated 
for the point P in a quite staggering figure (Figure 11). 

For the point Q the variation of amplitude with period is further followed up to T = 500 s 
(Figure 9). 

The conclusion i s  the same as in paper 11, that the SWT diffraction solution (i.e. using the 
linearized shallow water wave equation) is a very good approximation to the ‘true’ solution 
(IDT) for T larger than 7 min (with the reservation, naturally, that linear theory holds; see 
the comments in the introduction). The SWT amplitudes diverge more and more from the 
IDT solution as the period decreases. However, if a high degree of accuracy is not needed, 
one can use the much simpler SWT approach down to, say, T = 5 min. 

The convergence rate of the series used for the solution of the wave equations is 
investigated in Appendix I. For a fixed accuracy, the necessary number of terms n,, in the 
series is shown to increase with increasing distance from the island and (rapidly) with 
decreasing period. The programming for the numerical calculations is briefly outlined in 
Appendix 11. 

A new criterion-based on the IDT wave equation-for the applicability of a refraction 
approach is summarized. The result is that the product of a relative bed slope and a relative 
slope of the amplitude surface be small (as well as the curvature of the amplitude surface, 
which is well known). 

In paper I the complete (i.e. VART) SWT refraction solution was presented for the point 
P (amplitude us period). It was shown that the vector addition in this case involved an infinite 
number of complex amplitudes from the individual orthogonals; the series diverges for 
2mJL, being an integer (La being wavelength for r = r,, the island shoreline). For complete- 
ness a similar figure is presented here for the point Q (Figure 15). Also here the refraction 
solution generally has very little likeness to the true (diffraction) solution. 
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A complete IDT refraction approach was hereafter tested; in contrast to the S W  
approach it contains only a limited number of vectors, each corresponding to an orthogonal 
reaching the point. For the point Q we have followed it continuously up to T 120 s (Figure 
9). The figure demonstrates-together with paper 11, Figure 4, see Appendix W ,  dealing 
with discrete periods for the point P-that the ‘refinement’ of a complete IDT refraction 
solution does not repair the inadequacy of SWT refraction. The only advantage is that in the 
former case the resulting amplitude is bounded for any period. The conclusion is that in cases 
similar to the present one, the geometrical optics approach-however tempting to use 
presenting an initial value problem-is all too primitive for waves in the tsunami range. This 
means cases where the water depth varies significantly over a wavelength. It is felt that one 
can generally conclude that refraction calculations should be applied only with utmost 
reservation to such long waves as tsunamis. 

All non-linear effects, including dissipation, have been neglected. 
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APPENDIX I: CONVERGENCE OF FOURIER SERIES FOR THE 
DIFFRACTION SOLUTIONS 

For the practical application of the finite Fourier series for the diffraction solution (12) or 
(13) to (15) it is useful to know how many terns one needs in order to obtain a given 
accuracy. This information can be even more important when we discuss whether a certain 
solution approach at all can be applied in a certain period range or in a certain space region 
of r and 6. 

In paper I(3.24) we introduced the number of terms nmu, necessary to obtain a prescribed 
relative accuracy ‘eps’ (O<eps<< I), which we here define by the relation 

This simple accuracy criterion, which directly controls the amplitudes and neglects the 
phases, is selected because of its simplicity. The exact solutions to (12) or (13) to (15) were 
constructed by continuing the summation until the last term of lR,JAil was less than eps 
squared. 

Inspection of the calculated phases revealed that the approximation errors for the phases 
basically followed the same dependence on wave period T and on the horizontal co- 
ordinates r and 9 as depicted for A/Ai in the figures in this appendix. 

In Figure 22 for T=480s (using the shallow water wave equation (8)) and 6=Oo (i.e. 
along the positive part of the x-axis) n,, us x/ra is shown for 1 a x l r , ,  5 2 8  and for 
eps = lo-’, and (eps = is normally referred to as two times d-places decimal 
accuracy.) 

Similar figures have been constructed for other values of 6, and from these figures we can 
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Figure 22. The necessary number of terms nmu in the Fourier series (SWT solution) us xlr, for T = 480 s, 
1 s x / r ,  5 2 8  (4 of shadow region), and eps = lo-' and lo-' 

conclude that Figure 22 is in practice valid for arbitrary 8. For a fixed r/rn the difference 
between nmax in Figure 22 and the nmu in figures for other 8 was never larger than 2. 

The general conclusion is that n,, increases monotonically with x/r,. For eps constant the 
variation is nearly linear from the island and outwards. From Figure 22 we can further 
conclude that for points on the shoal, n,, is only increased by one or two (depending on 
eps) when we 'move' from the island to the outer boundary of the shoal. If eps is decreased 
from lo-' to only up to five additional terms are needed in the solution series for x/rn 
less than 28 and for T =  480 s (Figure 22). If eps is again squared (i.e. eps = lo-*) only up to 
seven additional terms are needed. (Notice that for 8 = 0" all the cos ( n o )  factors in (24) are 
equal to one.) 

Similar figures to Figure 22 have been constructed for other values of wave period T and 
from these figures we have found that if we use x/L (instead of x/r,) as abscissa, Figure 22 
becomes in practice valid for an arbitrary SWT wave period (or wavelength L) .  

and 8 = 0" (i.e. points along the positive part of the x-axis), 
nmar: us T is shown for 200 s s T 5 1900 s, and for x/r ,  = 1, 3, 9 and 27. The figure is based 
on the shallow water wave equation (8). 

Figures similar to Figure 23 have been constructed for other values of 8, and from these 
figures we can conclude that Figure 23 is in practice valid for an arbitrary 8. 

The general conclusion is that nmnx increases with decreasing period (shorter waves). Far 
away from the island the increase is rapid. We can further summarize that for all periods in 
the SWT range, and for all points up to a distance of, say r/ra = 10, only up to 20 terms of the 
series solution are needed for e p s 2  As far as, say r/rn S 30 only up to 40 terms are 
needed for eps210-4. For solutions in any point on the shoal only up to eight terms are 
needed in the SWT period range for e p s z  

In Figure 23, for eps = 
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Figure 24. The necessary number of terms nmax in the Fourier series (IDT and S W  solution) us wave period 
T for eps= O<Ts560s ,  and x/r,  = -1, -3, -9 and -27 (p of ‘illuminated’ region) 

To investigate the difference between number of terms necessary in the SWT and IDT 
cases, Figure 24 was drawn up. In this figure we have shown nmax us T for eps= lod4, and 
6 = 180” i.e. points along the negative x-axis), for O<Ts560s ,  and x/r ,  =-1, -3, -9 and 
-27. The full curves correspond to solution of the intermediate depth wave equation (2). 
In the shallow water period range of this figure also the results of an SWT calculation 

(solution to (8)) are plotted (for comparison). For T larger than say, 420 s, the two sets of 
curves (IDT and SWT) were for continuity reasons expected to be almost identical be- 
forehand. The figure shows that this is indeed nearly the case. For all relevant values of T 
(i.e. say T2200s),  the IDT and SWT curves coincide for x/r ,  =-1 and -3. For Ix/r,l 
increasing on the constant water depth, however, the SWT solution needs a few terms less 
than the IDT solution in the overlap range for T (IDTeSWT, say 200 s < T<420 s). 

Figure 24 also shows that for T decreasing in the ‘short’ period range (say T s  140 s) the 
number of terms necessary in the Fourier series increases very quickly. For x/r,  = -1, 
6 = 180” (the point P, Figure l), and T s 2 0  s, the method is impractical, demanding an 
unreasonable CPU (Central processing unit) time in the computer. 

For the point P we showed in Figure 11 that for T s 3 5  s, the solutions of the wave 
equation (2) and the refraction were identical. For T = 35 s we see from Figure 24 that about 
50 terms of the Fourier series solution of the wave equation have to be included for the point 
P. (In contrast to this the refraction solution for this period (and all smaller periods) had a 
contribution from only one orthogonal, i.e. consisted of only one term, SO to speak.) 

Here we must stress that it is only for points along the ‘iUurninated’ part of the shoreline of 
the island that, in the period range where the Fourier series solution becomes impractical, we 
have presented another method (the refraction approach) to determine the wave field. An 
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alternative method for small periods and for all other points than the above-mentioned 
'illuminated' part of the shoreline is therefore needed. 

More refined ray methods, such as Keller's geometrical diffraction theory (GDT, see 
References 22 and 23) have been developed only for constant water depth, or for variable 
water depth using SWT, and in the latter period range we have already an efficient analytical 
solution to ( S ) ,  see (3.6) together with (3.19) in paper I. In principle it may be possible to 
extend the GDT method to variable water depth using IDT, but the ray tracing is likely to 
become so cumbersome that the method becomes impracticable. 

A more promising method for small periods is to look for an alternative method to sum 
the slowly converging series (12) or (13) to (15). From Figure 24 we concluded that it was 
impracticable to compute the sum of the series by adding up the terms. The usual method of 
summing a slowly converging series b,, which has 
the property that its partial sums s, =I:=:=, b,, for small values of m, give good approxima- 
tions to the sum of the series Cnz0 a,,. The series b,, may be either convergent or 
divergent. These methods are very attractive24 and may be investigated in a later publication. 

a,, is to replace it with a series 

APPENDIX 11: PROGRAMMING 

The numerical methods described were programmed in the IBM 0 s  370 implementation of 
PL/I using version 1 of the PL/I optimizing computer.25 The programs were executed at the 
computing centre (NEUCC) at the Technical University of Denmark, using an IBM 370/165, 
and from July 1979 on an IBM 3033.2"28 

The floating-point calculations of the vector addition refraction theory (VART) in Section 
4.2 were programmed in extended precision, which for the above-mentioned computer is 28 
hexadecimal digits (approximately 35 decimal digits). All other floating-point calculations 
were made in double precision, i.e. 14 hexadecimal digits (approximately 16 decimal digits). 

APPENDIX 111: ABBREVIATIONS 

Paper I = Jonsson et al." 
Paper I1 = Jonsson and Skovgaard." 
Point P =the middle of the front face of the island (Figure 1). 
Point Q =the middle of the shadow region of the island (Figure 1). 
SWT =shallow water theory. 
IDT = intermediate depth theory. 
VART = vector addition refraction theory. 
Suffix a refers to quantity at the island shoreline (inner edge of the shoal). 
S u e  b refers to quantity at the outer edge of the shoal. 
SuaX 'i' refers to undisturbed (incident) wave on constant water depth. 
LO =deep water wavelength, see (11). 
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APPENDIX W :  REPRINTS OF 8 FIGURES FROM PAPERS I AND I1 

5 1  

0- 60 90 120 150 
' ' ' ' ' " ' ' ' ' ' 

30 
POINT P 

AZIMUTH (9:) POINT Q 

POINT 0 POINT P 
AZIMUTH i q  

Figure 2 in paper I. Relative amplitude A/A, at shoreline us azimuth 8;: (a) 
(top) Corresponding to an analytical shallow water diffraction solution; (b) 
(bottom) Corresponding to a numerical intermediate depth diffraction solution 

and two curves from (a) 
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Figure 7 in paper I. Relative amplitude A/Ai at point P w wave period T and 
relative wavelength LJr,,. Analytical shallow water diffraction and refraction solutions, 

and numerical intermediate depth refraction solution for the primary orthogonal 

Figure 11 in paper I. Vector addition of wave surface displacements at 
point P due to a shallow water refraction solution; (a) T = 317.15 s; (b) 

T = 317.30 s 
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Figure 3 in paper 11. Contours for relative amplitude A/A, over the shoal. T =  120 S. The interval between the 
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Figure 4 in paper 11. Relative amplitude A/Ai at point P [(r/ra, 0:) f (1, 180)] us wave period T and relative 
wavelength L,,/rm 
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Legend: 
-Dillraction solution ID7 --- Dittraciion sotution SWT 

Figure 5 in paper 11. Relative amplitude A/A, at point Q [(r/r,, 0;) = (1, O)] us wave period T 
and relative wavelength LJra 
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Figure 6 in paper 11. Contours for relative amplitude A/A, over the shoal corresponding to both KDT 
and SWT. T = 240 s 
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Figure 1 1  in paper 11. Relative amplitude AIA, at point P [(r/r,,, 03 =(l, 180)] us 
relative wavelength L,,/ra for a cylindrical island in an Ocean of constant depth. 

Periods T correspond to r, = 10.000 m and h = h, - 444 m 

Figures from papcr I reprinted from .I. Mar. Res., 34 (3). 469-496, by permission of the Sears Foundation for 

Figures from paper I1 reprinted from Mar. Geodesy. 2(1). 41-58, by permission of Crane, R w a k  & Co.. Inc. @ 
Marine Research. Yale University, New Haven, Connecticut, 1976. 

1979 by Crane, RuFsak & Co., Inc.. New York. 
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